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Abstract

Species distribution models relate the geographic occurrence
pattern of a species to environmental features and are used
for a variety of scientific and management purposes. One
source of data for building species distribution models is cit-
izen science, in which volunteers report locations where they
observed (or did not observe) sets of species. Since volun-
teers have variable levels of expertise, citizen science data
may contain both false positives and false negatives in the
location labels (present vs. absent) they provide, but many
common modeling approaches for this task do not address
these sources of noise explicitly. In this paper, we propose to
formulate the species distribution modeling task as a classi-
fication problem with class-conditional noise. Our approach
builds on other applications of class-conditional noise mod-
els to crowdsourced data, but we focus on leveraging features
of the noise processes that are distinct from the class features.
We describe the conditions under which the parameters of our
proposed model are identifiable and apply it to simulated data
and data from the eBird citizen science project.

Introduction

A species distribution model (SDM) describes the geo-
graphic occurrence pattern of a species in terms of envi-
ronmental features like climate and habitat variables. SDMs
are useful for a variety of scientific and management pur-
poses, including making inferences about the habitat re-
quirements for a species and making predictions about
whether a species is likely to persist in new locations. In this
paper, we focus on a variant of species distribution model-
ing in which individual species are modeled using binary
labels indicating detection or non-detection at a set of loca-
tions; that is, we use so-called ’presence-absence’ data rather
than ’presence-background’ or ’occupancy-detection’ data
(Guillera-Arroita et al. 2015).

Citizen science projects engage volunteers in the scientific
process. In the realms of biology and ecology, the role of
citizen scientists is often to collect data about which species
occur at various locations. In the eBird project, bird watchers
can report their observations to a database at the Cornell Lab
of Ornithology using an online checklist system (Sullivan et
al. 2014). Participants may make observations at any time
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and location they wish. Each checklist includes the species
that were observed, whether or not the observer is report-
ing all species they detected, measurements indicating the
effort expended during the observation, and the time, date,
and location of the observation. Note that if the observer re-
ports all the species they detected, we can infer the absence
of the complement of this set of species. Using these types
of records, the eBird database provides a set of instances
for each species (one for each location) with binary labels,
which can be linked with environmental features.

In this paper, we propose to formulate the problem of
species distribution modeling using citizen science data as
a classification problem subject to class-conditional label
noise. For the class present, label noise arises from im-
perfect detection of secretive or cryptic species, a prob-
lem long-recognized in ecological studies (MacKenzie et al.
2002). For the absent class, label noise arises due to mis-
taken identifications by observers (Royle and Link 2006).
Some popular species distribution modeling approaches as-
sume the absence of these false positives (MacKenzie et al.
2002) because field studies often employ highly trained ob-
servers, but the variable skill levels of volunteers make this
a tenuous assumption for citizen science data. False pos-
itives have received less attention than false negatives in
this domain, though some work has used auxilliary informa-
tion about surveys to account for them (Miller et al. 2011;
Ruiz-Gutierrez, Hooten, and Campbell Grant 2016).

Since we expect the class-conditional noise rates in this
setting to be asymmetric, this is a challenging learning prob-
lem (Scott, Blanchard, and Handy 2013). In this work, we
propose and investigate a model for classification with class-
conditional label noise that leverages features of asymmetric
label noise without requiring multiple labels per example.
The only auxilliary information we require is features of the
noise models, such as are available in the information col-
lected in the eBird protocol on the observation conditions for
each instance. We analyze the identifiability of the model,
use simulated data to explore model behavior in a variety of
settings, and apply the model to the eBird data to compare
against alternative approaches.

Related Work

Our work builds on research into classification settings with
label noise (Menon et al. 2015; Natarajan et al. 2013; Man-



wani, Sastry, and Member 2013; Li et al. 2007; Lawrence
and Scholkopf 2001). Frénay and Verleysen (2014) provide
a helpful review of types of label noise and methods for deal-
ing with them. We focus on asymmetric label noise (Scott,
Blanchard, and Handy 2013), as opposed to methods that as-
sume equal rates of false positives and false negatives. Our
framework is most closely related to the ‘noisy not at ran-
dom’ (NNAR) model since we treat label noise as feature-
dependent (Frénay and Verleysen 2014). In contrast to the
typical view of NNAR noise, the set of features on which
the noise depends are fully or partially disjoint from the fea-
tures on which the true class label depends in our work.
Citizen science has both similarities and differences from
crowdsourcing paradigms for generating labeled data, in
which workers are presented with a set of instances to la-
bel. Some similarities are obvious; for example, the la-
bels are being generated by a pool of workers with vari-
able skill levels. Errors are likely to occur in both set-
tings, causing both false negatives and false positives. In
both paradigms, the difficulty of the instance as well as the
skill and effort levels of the labeler may affect the proba-
bility of mislabeling an instance (Bi et al. 2014). However,
there are some important distinctions between citizen sci-
ence and crowdsourcing as well. In crowdsourcing, the set
of instances to be labeled and their assignments to labelers
are controlled by the task setting. In contrast, citizen sci-
entists effectively choose their own instances to label from
an infinite set of possibilities, since volunteers choose the
times and places to make their observations. A consequence
of this freedom is that we do not in general have multi-
ple labels of each instance. Some analyses of citizen sci-
ence data have grouped checklists that are close in space
and time to construct multiple label structure (Yu, Hutchin-
son, and Wong 2014; Hutchinson, Liu, and Dietterich 2011;
Yu, Wong, and Hutchinson 2010), but this requires assump-
tions about the granularity with which to aggregate, which
we seek to avoid in this work. In addition, there are sources
of variability in mislabeling probabilities in citizen science
that go beyond labeler effort and task difficulty: the observa-
tion conditions under which the labels were generated (e.g.
time of day, weather). Work by Raykar et al. (2010) takes
a similar approach to crowdsourced data as the model we
propose herein, except that it relies on multiple labels per
instance and does not include features in the noise models.
Our approach also builds on statistical models in ecology.
MacKenzie et al. (2002) popularized occupancy models to
account for imperfect detection in ecological studies. This
approach requires multiple observations during a period
when the true status of the species (the true class label) is
unchanging, and it incorporates an explicit model of the ob-
servation process to correct for underreporting. However, it
assumes that there are no false positives in the data. Further
work on this family of models added the possibility of false
positives (Royle and Link 2006), but the resulting model had
limited application in practice due to identifiability issues
(Miller et al. 2011). Extensions of it improved model behav-
ior, but they required additional information (e.g. multiple
survey methods; (Miller et al. 2011)). More recent work has
also explored variants of occupancy models requiring only
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a single observation at each location (Lele, Moreno, and
Bayne 2012). There is also discussion in the literature about
the identifiability of single-visit occupancy models (with-
out false positives) (Knape and Korner-Nievergelt 2014;
Sélymos and Lele 2015); in particular, identifiability for
these models relies on the fidelity of the link function.

Our proposed approach unifies several of these frame-
works. It can be seen as a novel use of the model from Royle
and Link (2006), applied to single-observation data rather
than multiple-observation data. Alternatively, it can be seen
as an extension of the single-observation occupancy model
of Lele, Moreno, and Bayne (2012) that allows for false pos-
itives. In the crowdsourcing context, our approach can be
viewed as an extension of the Raykar er al. (2010) model
that uses only a single label per instance and introduces fea-
tures to describe the noise processes. The contributions of
this paper are: to connect literature addressing this problem
across several research communities (crowdsourcing, ecol-
ogy, machine learning); to propose a generalization of the
existing approaches described above; to describe conditions
for identifiability of the proposed model; to explore perfor-
mance of the proposed approach in simulation as compared
with existing approaches; to evaluate whether model selec-
tion identifies the features associated with each sub-model
of the approach correctly; and to compare predictions from
the proposed approach to existing approaches.

Model Framework

Our notation follows that of Frénay and Verleysen, 2014. Let
Y be the true class, Y be the observed label, and E be a bi-
nary variable indicating whether a labeling error is present
(i.e. Y # Y). In this paper, we address binary classifica-
tion (Y € {0,1}) and leave the multi-class setting to future
work. Let X be a vector of features related to Y. The data-
generating model is that the true class Y is chosen based on
the features X . Then, if an error occurs (£ = 1), the label is
flipped to produce Y.

The key difference between our proposed framework and
previous work is that we allow errors to depend on an ad-
ditional set of features W, distinct from the features X that
influence the true class. (Below, we explore cases with over-
lap between these feature sets, but they play a conceptually
different role in the framework.) For clarity, we will refer
to X as the class features and W as the noise features. We
define the following quantities:

Y:=PY =1X) =0(f(X;q))
pi= P(E =1]Y = 0,W) = 0,(9(W; )
n:=PE=1]Y =1,W) = on(h(W"; 7)),

where W (®) is the subset of the noise features that impact
the probability of a false positive (p), W (") is the subset of
the noise features that impact the probability of a false nega-
tive (1), and o denotes the link function for each component
(e.g. logistic). We use the following vocabulary conventions
to designate the different pieces of this model: the functions
1, p, and n will be referred to as the fundamental parame-
ters; the functions o, 0, and o}, will be referred to as the



link functions; the functions f, g, and h will be referred to as
the feature functions; and the coefficients «, 3, and v will be
referred to as the coefficient parameters. Letting the proba-
bility of a positive observation for instance ¢ be

pi = Ui(1—m) + (1 — ) ps,

the likelihood function for the model is
N
i=1

In the experiments below, we fit model parameters us-
ing maximum likelihood estimation. We used an existing
implementation of the Royle and Link (2006) model avail-
able in the R package unmarked (R Core Team 2015;
Fiske and Chandler 2011), since it was sufficiently general
to allow for features of the noise models and lack of replicate
surveys. Since the likelihood is not convex, we select the fit
with the greatest likelihood from a set of random restarts.
Occasionally the optimization does not converge, so we al-
low 50 random restart attempts to get 40 successful fits.

Identifiability

The basic question we would like to answer is: Under condi-
tion X, will occupancy probability be increased or decreased
(and by how much) compared to some baseline condition
X? We cannot answer this most general form of the ques-
tion without making some assumptions (constraints). As a
demonstration of this fact, suppose that we observe that for
larger values of X, Y is more likely to be one. Unless we
make additional constraining assumptions, we cannot tell
whether this is because Y is more likely to be one in this
setting, F is more likely to be one when Y is zero in this
setting, or F is more likely to be zero when Y is one in this
setting (or some combination of these possibilities).

Without significantly constraining the problem, we are
unable to distinguish between these different explanations.
This is the same concern that was discussed by Knape and
Korner-Nievergelt (2014), and addressed further with some
constraint recommendations by S6lymos and Lele (2015).
Specifically, we are concerned with the identifiability of the
fundamental parameters 1), p, and 77, and also with the identi-
fiability of the coefficient parameters «, 3, and ~y. Clearly the
coefficient parameters are not identifiable if the fundamental
parameters are non-identifiable. If the fundamental parame-
ters are identifiable, then the identifiability of the coefficient
parameters depends on the form and parameterization of the
covariate functions. Our concern is how to make both the
the fundamental parameters and the coefficient parameters
identifiable, since it is the coefficient parameters that address
the primary scientific questions of interest: namely, if a co-
variate value changes, what are the effects on the probability
that the species of interest is present and, secondarily, on the
probabilities of observation errors.

Starting with complete generality, letting Z = (X, W)
and 0 = (¢, n, p), we need:

P(Y =1Z = 2,0) = ¥(2) [L = n(2)] + [1 — ¥(2)] p(2)
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to satisfy
sup [P(Y = 1]z,0) — P(Y = 1|2,0)| > 0

whenever 6 # 6*. First note that there are an infinite num-
ber of solutions since there are three unknowns in this single
equation. The solutions are naturally constrained by the fact
that v, n, and p are all probabilities, and therefore must be
in the range [0, 1]. The solution space is further reduced if
we require that ¢, 17, and p have certain functional forms as
a function of Z, but of course then the solution is dependent
upon the form chosen. We focus here on the logistic link
function, as one of many link functions that would work to
assist identifiability. In some settings, it can be further useful
to require that at least one of the active covariates is contin-
uous, since in the case of discrete covariates handled with
indicator functions the functional form may not provide as
much structure: if a different value of v (z), p(z), and n(z)
is allowed for every possible discrete value of Z7 = z, we
are back to the most general case and have lost identifiabil-
ity. However, in more restricted settings such as when dis-
tinct non- or minimally-overlapping sets of covariates affect
the different fundamental parameters v, p, and 7, we have
identifiability without requiring that any of the covariates be
continuous.

Note that even specifying the functional form (link func-
tion) is not enough to provide identifiability if the model
families for 77 and p are the same and include 1 - o whenever
o is a valid link. This is because the following two comple-
mentary models give identical probabilities: 6; = (¥, n, p)
and 03 = (1 — 9,1 — p,1 — n). To address this comple-
mentary model source of non-identifiability, we must con-
strain the problem to allow only one of these results (i.e.,
define a way to select between these two equal-likelihood
solutions). This can be accomplished in several ways: ei-
ther by selecting the solution that gives values of 1, n, or
p in a certain range (e.g., choose the solution with the min-
imum value of 1), or by specifying that, for instance, the
function 7 depends on a certain set of covariates, while p
depends on a distinct set. Constraining the covariates that
appear in the different noise models to be distinct sets will
work to eliminate the issue of complementary model so-
lutions since if we know that p o4(g(W®; B)) and
n = on(h(W;~)) with distinct covariate sets W (*) and
WD then py = 1 —n = 1— o,(h(W;4)) is not a valid
solution because it depends on the wrong covariates (and
likewise for o =1 — p).

The two complementary equally optimal solutions are
also the reason that this model does not perform well when
the noise models do not depend on covariates (the *constant
noise’ settings in the experiments below): the resulting lack
of identifiability means that there are two complementary
solutions that fit the observed data the exact same, so the pa-
rameter estimates are not unique (and thus have very large
variances). Likewise, if the covariates that affect the noise
models are effectively close to constant, identifiability will
be very fragile as we will be very close to the constant noise
setting. Thus we have a spectrum of identifiability that de-
pends on the chosen form of the model, and the roles and



Number | Name Feature overlap Feature distributions Link
1 none-cont-logit | none all N(0,1) logit
2 none-mix-logit | none odd N(0,1), even Bern(0.5) | logit
3 none-cat-logit none all Bern(0.5) logit
4 noise-cont-logit | noise: Wo = Wy all N(0,1) logit
5 noise-mix-logit | noise: Wy = Wy odd N(0,1), even Bern(0.5) | logit
6 class-cont-logit | class and noise: X1 = Wy and X3 = W3 | all N(0,1) logit
7 class-mix-logit | class and noise: X1 = Wy and X3 = W3 | odd N(0,1), even Bern(0.5) | logit
8 noise-mix-probit | noise: Wy = Wy odd N(0,1), even Bern(0.5) | probit
9 noise-mix-scale | noise: Wo = Wy odd N(0, 1), even Bern(0.5) | scale

Table 1: Simulated data settings. Names reflect the overlap setting, feature distributions, and link functions. Feature overlap
refers to the extent to which the features of each feature function were shared. Feature distributions were either Gaussian or
Bernoulli, in some cases depending on whether the index of the feature was odd or even. The link function listed was used to
generate data, though the logit link was always used in fitting.

distributions of the relevant covariates.

Simulation Experiments
Data Generation

We designed simulation experiments to explore model per-
formance and identifiability under scenarios with varying
feature overlap between feature functions (i.e. f, g, and h),
feature distributions, the true link function, class balance,
noise rates, and the number of training instances. We con-
sidered models of the following form.

f=as+ a1 X1+ asXs + a3 X3
g = Bo+ BiW1+ B2 Ws
h = +vWs3+7W,

In the first set of simulations, all seven features were gener-
ated independently (called none, for no overlap). We created
three variants of this setting (#1-3 in Table 1): 1) cont: all
continuous features, from N (0, 1), 2) mix: odd-indexed con-
tinuous and even-indexed categorical features, from N (0, 1)
and Bern(0.5), and 3) cat: all categorical features, from
Bern(0.5). In the second set of simulations, we set Wo =
W4 to explore the effect of overlapping noise features (called
noise, for overlap in the noise features; #4-5 in Table 1). In
this setting, we created variants with both continuous and
mixed features. In the third set of simulations, we gener-
ated overlap between the class and noise models by setting
X1 = Wy and X3 = W3 (called class, for overlap in the
class and noise features; #6-7 in Table 1). Similarly to the
noise setting, we used the cont and mix feature settings.

In addition to varying the feature overlap and distribu-
tions, we explored the effect of a misspecified link function.
As explained above, the identifiability of the model param-
eters depends on the link function. To explore sensitivity to
this condition, we generated datasets from the noise-mix set-
ting using two incorrect link functions (the model was al-
ways fit with a logit link): the probit link and a scale link
that scaled and shifted the real values linearly to transform
them into probabilities (#8-9 in Table 1). The feature over-
lap, distribution, and link settings are summarized in Table
1. Note that all settings have at least one distinct feature in
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each feature function, so the coefficient parameters are iden-
tifiable.

For each of these settings, we varied «, 3, and -y to explore
the effects of class balance and noise rates. For all scenarios,
we set the non-intercept coefficients to 1 and varied the in-
tercepts to explore the effects of class balance and noise lev-
els on performance. For class balance, the low, medium, and
high values were ¢ € {0.25,0.5,0.75}. For the noise levels,
the low, medium, and high levels were 77 € {0.1,0.25,0.4}
and 7 € {0.1,0.25,0.4}. For each combination of feature
settings (9) and parameter settings (27), we simulated 30
training sets each of sizes 200, 400, 800, 1600, 3200, 6400,
and 12800 and one test set of 5000 examples. Additional
details of the simulated data are available in supplemental
material.

Method Comparison and Evaluation
For each training set, we compared five methods:

1. LRI: Logistic regression ignoring label noise (using just
the class features to predict the noisy labels).

LR2: Logistic regression ignoring the label structure but
using the noise features (using the class and noise features
all together to predict the noisy labels).

OCC (for OCCupancy): Single-visit occupancy model,
using all noise features for false negatives and ignoring
false positives (MacKenzie et al. 2002).

CN (for Constant Noise models): Proposed model with
false positives and false negatives but without noise fea-
tures (using a constant/intercept-only model for both);
similar to Raykar ez al. (2010).

. FP: (for False Positive models with features) Proposed
model with noise features for both false positives and false
negatives. Sets of noise features in feature functions g and
h were consistent with the data-generating models, so the
fundamental parameters were identifiable.

For all methods, we measured the quality of predictions of
the true class labels using mean squared error (MSE) in the
class probability predictions.
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Figure 1: Mean squared error in the class probabilities (1) for each method on each of the data-generating models (Table 1).
All datasets had 3200 training instances, and each boxplot represents 30 simulated datasets.
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Figure 2: Mean squared error in the class probabilities for
dataset #1 with mid-level class balance and noise rates. Each
boxplot represents 30 simulated datasets.

Simulation Results

Here, we present results from the intermediate setting for
class balance and noise rates as a representative example,
since the results are relatively consistent across settings (re-
sults for all settings and datasets are in the supplement; Fig-
ures S1-S27). In this ideal setting with identifiable, well-
specified models and enough data, the types of features and
their overlap in the feature functions is not critical (Figure 1,
#1-7). The FP model predicts the class probabilities better
than the alternative methods, as expected. Exceptions occur
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when the link function is misspecified (Figure 1, #8-9). The
CN model tends to perform worst, which is likely due to
lack of identifiability in the noise parameters, since the CN
model does not have features specified for g and A to distin-
guish between the two symmetric solutions discussed above.

However, these results only hold if there is sufficient data
for fitting the FP model. The sample complexity require-
ments of the FP model are greater than those of simpler
models, so for small datasets, even the simple logistic re-
gressions predict class probabilities better (Figure 2). The
specific threshold for ‘enough’ data to support the FP ap-
proach will vary depending on other characteristics of the
problem (e.g. number of features).

Empirical Experiments
eBird Data

The eBird Reference Dataset consists of checklists indicat-
ing which species were observed during birding events in
which citizen scientists report all of the species they ob-
served (Munson et al. 2012). We used data collected in
2012. Following previous analyses of eBird data (Yu, Wong,
and Hutchinson 2010; Hutchinson, Liu, and Dietterich 2011;
Yu, Hutchinson, and Wong 2014), we chose to focus on sta-
tionary and traveling counts from California and New York
in May, June, and July, during which time habitat associa-
tions are relatively stable.

The eBird Reference Dataset is distributed with both envi-
ronmental (class) features and observation (noise) features.
The features we considered included 11 class features (3
real, 2 categorical, 6 principal components of land cover
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Figure 3: Comparison of predicted class probabilities from the F'P method on the x-axis versus the OCC and CN methods on the
y-axis. The estimated average false positive rates are 0.095 and 0.0058 for Vireo olivaceus and Picoides nuttallii respectively.

Habitat Features

Feature Type
Human population from 2000 census | real
Housing percent vacant real
Elevation real
Average temperature categorical
Precipitation categorical
Percent of surrounding area covered
in 15 land cover types real

Observation Features
Feature Type
Day of year real
Time of day real
Effort in hours real
Effort in distance travelled real
Number of observers real

Table 2: Features of models fit to the eBird data, taken from
the eBird Reference Dataset.

measurements) and 5 noise features (all real-valued) and are
listed in Table 2. We scaled continuous features to N (0, 1).
After removing records with missing values and outliers for
the features, the California data contained 16,742 checklists
and the New York data contained 11,982 checklists. For each
state, we randomly selected 4000 checklists as a test set,
4000 checklists as a validation set, and used the remaining
checklists for training.

The eBird Reference Dataset is also distributed with in-
formation about the species it contains, including whether or
not one species is often confused with another. We selected
species with this property for this analysis, since species
confusions are a potential source of false positives in the
eBird data (Yu, Hutchinson, and Wong 2014). In addition,
we limited the species pool to species observed in at least
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10% of the checklists in the state. The pool of species is
listed in the supplement (Table S4).

We also created two simulated species using the eBird
features, which are more realistic than standard normal or
binary features (see supplement, Table S2). The class mod-
els for both species depended on two real-valued class fea-
tures. The noise models for the first simulated species (Sim/)
had disjoint sets of features (two for false negatives and one
for false positives). The noise models for the second sim-
ulated species (Sim2) shared one feature (two features for
each model with one overlapping). Both species had true
occupancy rates near 55%. The average false negative rates
were 20% and 40%, and the average false positive rates were
5% and 10%, for SimlI and Sim2 respectively.

eBird Experiments

In the simulated experiments, we achieved identifiability by
specifying each feature function in accordance with the data-
generating mechanisms. In the eBird data, we faced a model
selection problem in assigning features to feature functions,
in particular for the noise models. We fit 21 different models
to each of the real and simulated eBird species, all of which
met the identifiability conditions discussed above (at least
one unique feature in each feature function). In each model,
the class feature function included all of the habitat features.
The false positive and false negative feature functions parti-
tioned the noise features differently. Models 1-16 assigned
each noise feature to exactly one of the noise models. Mod-
els 17-21 included all noise features in one noise model and
all noise features except one in the other noise model (see
supplement, Table S3). Each of these 21 models has a sym-
metric analog, so in each case we chose between the pair
of symmetric models by selecting the one in which the false
positive rate (p) was less than the detection rate (1 — 7). That
is, we used the constraint that observers are more likely to
detect the correct species than to misidentify it.



We compared against the same set of methods as in the
simulated data experiments. For the simulated species, we
can refer to the data-generating models to evaluate the mod-
els. For the real species, we do not have access to ‘ground
truth’ about the species true presence or absence while a
checklist was collected, but we can examine the differences
in the class probabilities predicted by different methods.

eBird Results

For Siml, the models selected in each state based on the
validation sets were not congruent with the data-generating
mechanisms. None of the models were fully correct, so by
‘congruent’ we mean that the correct features were included
in the noise models in combinations such that either the
model as written or the symmetric analog could represent
the generating model if the irrelevant features were given
coefficients of 0. Interestingly though, on the test sets, the
selected models had lower MSE on ) compared with most
other FP models and the OCC model. The selected models
also had lower MSE on %), p, and 7 than the CN model (see
supplement, Tables S5 and S7). Therefore, despite lack of a
perfect representation of the data-generating model, the pre-
dictions were superior to alternative methods. For Sim2, the
models selected in each state were congruent with the data-
generating mechanisms (see supplement, Tables S6 and S8).
Again, many of the 21 FP models, including those unable
to represent the data-generating mechanism, outperformed
OCC and CN. In California, the vast majority of the FP mod-
els outperform the OCC and CN alternatives, whereas only
a subset of the FP models in New York are clearly superior
to the alternatives. This may be due to greater sample size;
the training dataset for California is roughly twice as large
as that for New York.

For the real species, estimated false positive rates ranged
from 0.0058 to 0.095 (see supplement, Table S4). These
low rates are likely due to eBird’s quality control measures.
Given the low rates, some F'P models made predictions sim-
ilar to the OCC models that ignored false positives, like Pi-
coides nuttallii in California. For other species, like Vireo
olivaceus in New York, the predictions from FP and OCC
models differ more, suggesting overprediction of the species
by the OCC model (Figure 3). Some models, like the OCC
model for Vireo olivaceus in New York, also showed signs
of overfitting in the form of boundary estimates for the class
probabilities. Figure 3 also compares the FP predictions to
the CN predictions for the class probabilities; the degree of
correlation between these predictions varied across species.
We expect this variation is due to differences in the impor-
tance of the noise features and to identifiability issues with
the CN method.

Discussion

In this paper, we have explored the idea of treating species
distribution modeling of citizen science data as a classifi-
cation problem with class-conditional label noise. Our ap-
proach stands in contrast to methods that ignore labeling er-
rors or only address the more common case of false nega-
tives while ignoring false positives. Failing to account for
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observation error can have severe consequences; not only
can the distribution of a species be underestimated, but its
relationship to features of interest can be estimated arbitrar-
ily poorly (MacKenzie et al. 2006). While we are motivated
by the citizen science domain, we note that the problem we
address is more general. Our work is applicable for settings
in which the sensors providing labels fail not at random, nor
based solely on the features related to the true class label, but
based on some combinaton of features describing the obser-
vation conditions, the sensors themselves, and the instances
they are labeling. Other domains that use human sensors or
labelers may fit this description; e.g. if available, character-
istics of workers in the Amazon Mechanical Turk system
(Yuen, King, and Leung 2011) like skill levels or time spent
on task could be used as noise features, separately from class
features for predicting the label itself. For labels provided by
mechanical sensors, noise features might include exposure
of the sensor to potential sources of damage (e.g. weather)
or the sensor’s inherent failure rates.

Our simulation studies elucidate the conditions under
which the proposed approach is most promising. Since the
model is more complex than simpler alternatives, it is impor-
tant that enough data be available for fitting to realize bene-
fits. For identifiability, each feature function should have at
least one unique feature. As with similar models in the ecol-
ogy literature, identifiability also relies on the fidelity of the
link functions.

The eBird case study explored model selection among a
variety of feature combinations for the noise feature func-
tions. For the simulated species with low false positive
rates, the selected model was not congruent with the data-
generating mechanism, though it gave better predictions of
the true class probabilities on the test set than most alterna-
tives. We hypothesize that the low FP rates (5%) contributed
to selecting an inconsistent model, though perhaps these
models could be recovered with more data. For the simu-
lated species with higher FP rates (10%), a congruent model
was selected and outperformed other FP models as well as
OCC and CN. The real species in the eBird case study were
estimated to have low false positive rates, leading to substan-
tial consistency with the OCC models and in some cases the
CN models. Given the uncertainty around model selection
for the simulated species with the lowest false positive rates,
caution is warranted in interpreting the selected models for
the real species.

In future work, we plan to explore better strategies for op-
timization and avoiding local optima than the current use
of random restarts in the proposed method. We will ex-
periment with regularization to penalize model complexity,
which may also simplify the optimization procedure. We
will also evaluate the method with additional noise-injection
strategies and apply it to other domains in which the noise
features are distinct from the class features. Finally, our next
steps will include more thorough ecological evaluation of
the model results to gauge the practical relevance of the
method for species distribution modeling.
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